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Abstract: This study investigates the atomization process in Respimat® Soft MistTM Inhalers
(SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate
the transition from colliding liquid jets to aerosolized droplets. Key parameters, including
colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied
to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The
VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament
fragmentation, producing finer and more uniform droplets while reducing total atomized
droplet mass. The relationship between surface tension and atomization performance
in colliding jet atomization is not monotonic. Reducing surface tension plays a complex
dual role in the atomization process. On the one hand, lower surface tension enhances
the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller
ligaments under the same airflow conditions and shear forces. This increases the probability
of generating more secondary droplets. On the other hand, reduced surface tension also
destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity
droplets in regimes where surface tension is a dominant force. Viscosity also influences
atomization through complex mechanisms, i.e., lower viscosity reduces resistance to liga-
ment breakup but promotes droplet interactions and coalescence, while higher viscosity
suppresses ligament fragmentation, generating larger droplets and reducing atomization
efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing
the performance and efficiency of inhalation therapies. Future work will incorporate nozzle
geometry, jet impingement angles, and surfactant effects to better understand and optimize
the atomization process in SMIs, focusing on achieving preferred droplet size distributions
and emitted doses for enhanced drug delivery efficiency in human respiratory systems.

Keywords: Soft Mist inhaler (SMI); volume of fluid-to-discrete phase model (VOF-to-DPM);
atomization; emitted droplet size distribution

1. Introduction
Inhaled aerosolized medications are a cornerstone of respiratory disease treatment,

with conditions such as chronic obstructive pulmonary disease (COPD) affecting over
250 million people globally and ranking as the third leading cause of death worldwide [1,2].
Despite their widespread use, current inhalation therapies, particularly dry powder in-
halers (DPIs) and pressurized metered-dose inhalers (pMDIs), suffer from inefficient drug
delivery [3]. This inefficiency is primarily due to high-plume momentum in pMDIs, leading
to premature deposition in the mouth–throat region via inertial impaction, reducing the
dose available for deep lung delivery [4].
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To address these challenges, Soft Mist inhalers (SMIs), such as Respimat® SMI
(Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany), were de-
veloped as a propellant-free atomization alternative to traditional pMDIs. The key benefits
of SMIs include (1) lower plume velocity, which reduces inertial impaction and increases
lung deposition; (2) higher fine particle fraction, improving drug delivery efficiency to
smaller airways; (3) propellant-free design, complying with environmental regulations set
by the Montreal Protocol [5]; and (4) more compatibility with inspiratory effort, making
it more suitable for patients with limited inhalation capacity. These advantages make
Respimat® SMI a promising solution for improving medication delivery to targeted lung
regions, particularly in diseases such as COPD.

Specifically, Respimat® SMI utilizes impinging jets to produce inhalable therapeutic
aerosols with fine droplet distributions (see Figure 1). Employing such a relatively novel
atomization method, SMIs are propellant-free and potentially have advantages mentioned
in the last paragraph that can potentially enhance the delivery of medications to small
airways, especially for patients with limited inhalation capabilities [6]. These advantages
include the high fine particulate matter fraction, low-plume velocity, and an atomization
method that does not depend on respiratory actuation. Specifically, the smaller droplet sizes
and lower initial spray velocity produced by the atomization in SMI avoid this unwanted
deposition in the mouth-to-throat region.
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Figure 1. Respimat® Soft Mist inhaler (SMI) with details of the colliding jets setup.

However, the development and finalization of Respimat® SMI design, especially the
colliding jets, largely rely on benchtop experiments [4]. Therefore, it will be beneficial to
develop a first principle-based digital twin system that can accurately and explicitly predict
the atomization process since it will allow for the improved development of similar devices
in the future that can generate preferred droplet size distributions for better drug delivery to
designated lung sites for specific diseases in a non-invasive, cost-effective, and time-saving
manner. Specifically, computational fluid dynamic (CFD) models, i.e., the VOF-to-DPM
approach [7–11], have been proven to be able to simulate and visualize multiple types of at-
omization processes, capturing the transition from liquid jets to aerosolized droplets under
varying design and operating conditions, which are challenging to capture experimentally.

There have been a limited number of VOF-to-DPM efforts to model SMIs focusing
on simulating the atomization process. Early studies employed simplified geometries and
2D models to predict spray characteristics, such as droplet size distribution, spray angles,
and velocity patterns. For example, Ge et al. [12] modeled the impinging jet atomization
in SMIs using a 2D VOF model, demonstrating the influence of nozzle geometry and jet
collision angle on spray dynamics. Jin et al. [7] utilized a 3D VOF-to-DPM approach to
study the atomization process, incorporating nozzle geometry and validating their results
against experimental data.

Despite advancements in numerical modeling, existing efforts face significant limita-
tions. Many studies need to be more accurate in the geometry of the atomization chamber,
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which reduces their applicability to real-world designs. Surface tension and liquid viscosity,
which are critical factors in droplet formation, often rely on approximations that may only
partially capture the complexities of high-curvature interfaces. These deficiencies hinder
the development of optimized SMI designs and prevent a comprehensive understanding
of the interplay between nozzle design, drug formulation, spray dynamics, and the key
metrics for SMI performance, which is the emitted droplet size distributions.

Therefore, to address the gaps mentioned above, this study developed a validated
3D VOF-to-DPM to explicitly simulate the atomization process in Respimat® SMI, from
the collision of liquid jets to the generation of therapeutic aerosolized droplets. This study
incorporates realistic nozzle geometries, explicit surface tension models, and multiscale
droplet formation dynamics. Additionally, parametric analysis provides insights into how
colliding jet inlet velocity, surface tension, and viscosity can influence the atomization pro-
cess and the resulting emitted droplet size distributions. This VOF-to-DPM and simulations
aim to contribute to the future development of improved SMI designs for more efficient
pulmonary drug delivery in a non-invasive, cost-effective, and time-saving manner.

2. Materials and Methods
2.1. Geometry and Mesh

The geometry employed in this study represents the Respimat ® SMI in Figures 1 and 2,
with a conical fluid region within the inhaler mouthpiece pointing toward the user. The
liquid jets are spaced 50 µm apart and angled at 45◦ to provide a 90◦ impingement angle.
These ducts are modeled at 8 µm wide and 12 µm long to represent the square cross-section
of the nozzle inlet into the fluid domain. Rather than simulating the ducts, the velocity
profile and direction are defined at the rectangular inlets (see Figures 1 and 2).
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A dynamic meshing algorithm, often referred to as adaptive mesh refinement (AMR),
was employed in mesh generation. The selected initial mesh for this zone contained
approximately 400,000 polyhedral and hexahedral elements. This cell count increased upon
introducing the liquid jets as adaptive refinement subdivides the elements surrounding the
air–liquid interface. Refinement and coarsening for these cases are defined by the volume
fraction gradient in each cell, ensuring detailed tracking of the boundary where air meets
the liquid jet. This refinement is performed at each flow time step to ensure the moving
interface is resolved at all points. Upon the transition of resolved VOF droplets into the
discrete phase, the mesh refinement in that location is reverted to the original mesh to
reduce computational cost. Further details are provided in Section 2.2.
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2.2. Governing Equations
2.2.1. VOF Model

The following governing equations represent the primary and secondary continuous
phases (i.e., air and liquid solution) of the VOF model. The VOF model tracks the volume
fraction of each phase in the mesh cells and calculates the interface between air and liquid
in this study. To track the secondary phase (i.e., liquid solution) and the eventual transition
into a discrete phase, a volume fraction αi for each phase, in this case for a liquid and gas
phase, is defined. Specifically, αi should satisfy the following:

∑2
i=1 αi = 1 (1)

where i = 1 is the primary phase (i.e., air) and i = 2 is the secondary phase (i.e., liquid
solution). αi = 1 indicates either phase or the cell contains only one phase. Interface-
containing cells, where 0 < αi < 1, are used to reconstruct the free fluid surface and comprise
both fluids. Accordingly, the volume-averaged density ρ and viscosity µ in each mesh cell
can be calculated using the following:

ρ = ∑2
i=1(αiρi) (2)

µ = ∑2
i=1(αiµi) (3)

Using Equations (1)–(3), mass conservation for a system of two immiscible fluids can be
given as follows:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (4)

where ui is the fluid velocity along direction xi.
Additionally, the momentum equation can be given as follows:

∂(ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= − ∂p
∂xi

+
∂τij

∂xj
+ ρgi + Fσ,i (5)

Here, ρ represents the fluid density within the cell based on Equation (2), and the viscous
stress tensor τij is expressed as follows:

τij = µ

[(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
δij

∂uk
∂xk

]
(6)

The final term in Equation (5), Fσ,i, represents the continuum surface tension force, which is
calculated here by the following equations as proposed by Brackbill et al. [13], i.e.,

Fσ,i = σκniδs (7)

κ = ∇ · n (8)

The surface tension coefficient, σ, is multiplied by the interface curvature κ, the local
interface average direction n, and the Dirac function δs which ensures that the force only
acts upon the fluid interface. Equation (8) shows how the curvature κ is calculated from the
divergence of the interface normal vector n, which describes the orientation of the interface
in each interface-containing cell. Specifically, n is defined as the following:

n = ∇α2 (9)
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Here, ∇α2 is numerically calculated using the piecewise linear interface reconstruction
(PLIC) method [14].

2.2.2. VOF-to-DPM Transition

When a droplet of the secondary phase (i.e., liquid solution) detaches from the breakup
region where the jets collide and liquid sheets form, it is considered to convert from the
VOF domain into the DPM tracking method (i.e., droplets will be calculated as spheres with
constant diameters). These droplets form from highly irregular ligaments during droplet
formation and secondary breakup, so filtering only the detached and spherical droplets
is essential. This conversion occurs when the diameter of this lump is within a specified
range, and the sphericity reaches a similar criterion. Determining whether a droplet meets
the criteria for being considered spherical involves two main parameters, i.e., (1) the cutoff
diameter ranges for droplets and (2) the sphericity of the droplet. Specifically, the VOF-
to-DPM method quantifies the sphericity of a detached liquid lump using asphericity (A),
which is defined by the following:

A = 1 − n· r
|r| (10)

Specifically, A quantifies how much a detached liquid shape deviates from being perfectly
spherical by comparing the alignment of the surface normal (n) with the normalized radius
vector (r), which is shown in Figure 3.
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As shown in Figure 3, for a perfectly spherical droplet, the surface normal vector is
perfectly aligned with the face centroid at every point on the surface, resulting in a dot
product of 1. This alignment corresponds to A = 0, indicating no deviation from sphericity.
However, the detached VOF liquid lump may not achieve a perfect spherical shape due to
viscous forces from the surrounding fluid. Therefore, tolerance is given to treat the droplets
as spheres. By simplifying the representation of droplet shape, computational resources
can be allocated more efficiently, facilitating faster simulations without sacrificing accuracy
in modeling droplet behavior. Specifically, two criteria are employed, i.e., if (1) A ≤ 0.2
and (2) there is a volume equivalent diameter dv ≤ 20 µm, the VOF liquid lump will
be converted into a mass point with the same properties and momentum as the original
VOF “droplet” and will be tracked using DPM. It is worth noting that the VOF-to-DPM
conversion significantly reduces the computational time. In addition, the mesh refinement
surrounding that surface is reset to the original, i.e., the coarser mesh, which ensures that
the volume of the surrounding cell is larger than the new point-mass droplet.
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2.2.3. DPM

To predict the translation of the DPM droplets, Newton’s 2nd law is employed, i.e.,

d
dt
(mdud,i) = FD

i + FL
i + FBM

i + FG
i (11)

In Equation (11), the droplet mass md, and components of droplet velocity ud,i are influenced
by the drag force FD

i [15,16], the Saffman Lift force FL
i for spherical droplets in a shearing

flow [17], the Brownian Motion-induced force FBM
i [18], and the gravitational force FG

i .

2.3. Numerical Setup

Using Ansys Fluent 2024 R2 (Ansys Inc., Canonsburg, PA, USA), the simulations
were conducted, which used an explicit VOF scheme with the Geo-Reconstruct method to
resolve the interface between the liquid and air phases. The Pressure Implicit with Splitting
of Operators (PISOs) algorithm was used for pressure–velocity coupling. The modified
body force-weighted pressure discretization scheme was used to balance accuracy, stability,
and robustness, particularly when body forces such as surface tension were dominant. The
k-ω Shear Stress Transport (SST) turbulence model was used to capture turbulence near
the interfaces and within the collision region. Liquid jet inlet conditions were defined using
a user-defined function (UDF) to have a velocity profile for fully developed duct flow [19]
according to the average inlet velocities listed in Table 1. To investigate how jet inlet velocity,
the surface tension of the liquid, and liquid viscosity influence the atomization process,
seven cases were created (see Table 1) with different parameter values. The parameter
values for Case A were derived from an actual SMI solution and operational condition [20].

Table 1. Summary of case names and adjusted parameters.

Case
Average Jet Inlet

Velocity
(Uin) [m/s]

Surface Tension
(σl) [N/m]

Liquid Viscosity
(µl) [Pa·s]

A 80 0.072 0.001003
B 100 0.072 0.001003
C 60 0.072 0.001003
D 80 0.06 0.001003
E 80 0.08 0.001003
F 80 0.072 0.0008
G 80 0.072 0.0012

Due to the limitations of the Courant number for this small geometry with high
velocities, the time step of these simulations was either 1 × 10−9 s or 2 × 10−9 s. The
Courant–Friedrichs–Lewy (CFL) number limit here is important to ensure that the air–
liquid interface is always contained within the refined cells. For the VOF atomization
simulations, an end flow time of 4 × 10−6 s was selected to ensure that the key atomization
characteristics, such as droplet breakup and initial size distribution, were adequately
captured. In this study, the primary objective was to observe the atomization process within
the mouthpiece and the initial stages of droplet formation rather than tracking every droplet
through the exit. Capturing all droplets exiting the mouthpiece would require significantly
longer simulation times of up to 20,000 CPU hours compared to 6000 CPU hours for these
cases. The simulations were performed on a local Dell Precision T7910 workstation (Intel®

Xeon® Processor E5-2683 v4 with dual processors, 32 cores, and 256 GB RAM). Using 32
to 64 threads, the real computational time is approximately 13 days to 30 days for each
case. Based on the focus of this study, the chosen end time provided a balance between
computational efficiency and capturing the primary breakup characteristics of interest.



Bioengineering 2025, 12, 264 7 of 17

Adaptive mesh refinement settings for these cases used a minimum cell edge length of
2 × 10−7 m. Mesh refinement was performed for each iteration based on the refinement
criterion, where cells exhibiting a phase interface curvature exceeding 1 × 10−12 m−1 were
marked for refinement. In contrast, mesh coarsening was performed on refined cells once
their curvature decreased below 1 × 10−14 m−1. Figure 4 represents an example of a section
of the mesh refinement near resolved liquid droplets and coarsened near-point-mass DPM.
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2.4. Model Calibration and Validation

To evaluate the prediction accuracy using the numerical setup for atomization, calibra-
tion, and validation were performed by comparing the VOF-to-DPM (i.e., Case A) outputs
against benchmark experimental data [20] with the same operational conditions. These
simulations were conducted under the nominal operating conditions of the Respimat®

SMI to replicate the measured size distributions and assess the accuracy of the VOF-to-
DPM in predicting atomized droplet size distributions. The experimental dataset [20] was
chosen due to the detailed droplet size and velocity measurements obtained using Phase
Doppler Anemometry (PDA). PDA captures droplet characteristics in real time without
the influence of secondary processes such as coagulation, evaporation, or condensation.
This contrasts with more conventional methods like Andersen Cascade Impactor (ACI) or
Next Generation Impactor (NGI) measurements, which can be affected by these additional
processes, potentially skewing the size distribution results. Using the PDA-based dataset
ensures a more direct comparison of droplet size distributions generated by the Respimat®

SMI under realistic operating conditions.
The model calibration involved fine-tuning parameters to align with the experimental

droplet size distribution for the base case (i.e., Case A). This step ensured that the VOF-to-
DPM accurately captured the atomization and initial droplet formation dynamics under
known conditions. While further validation against a range of operating conditions would
be optimal beyond the base case comparison only, this validation against limited benchmark
experimental data still provides evidence supporting the reliability of the VOF-to-DPM
in predicting atomized droplet size distributions. To validate the VOF-to-DPM, the Mass
Median Aerodynamic Diameter (MMAD) from the simulation results was compared against
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the volume-based median diameter (dv50) reported in [20]. The comparison is visualized in
Figure 5. The uniform droplet density, MMAD and dv50 were equivalent, as both represent
the 50th percentile of the droplet size distribution by mass or volume, respectively. The
present VOF-to-DPM produced an MMAD of 3.205 µm, closely aligning with the dv50

values reported in the experimental study [20], which ranged from 2.59 µm to 3.41 µm.
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Figure 5. Comparisons of droplet size distributions predicted using the VOF-to-DPM (Case A) and
benchmark experimental data [20].

3. Results and Discussion
Comparisons of atomization processes and generated droplet size distributions of

Cases A to G are shown in Table 2 and Figures 6–11. It can be observed that during the
collision of the liquid jets, a liquid sheet is formed, which begins to fragment radially into
ligaments, which subsequently undergo breakup into droplets. This atomization process
occurs in a unique regime of high-liquid Weber (Wel) numbers (i.e., 640 to 1111, as listed
in Table 2) and low-liquid Reynolds numbers (Rel) (i.e., 478 to 798). The initial liquid jets
exhibit laminar flow, which explains the absence of turbulent breakup and impact waves.
Table 2 summarizes the atomized droplet statistics as well as the Wel values of the cases.
Specifically, the definitions of the spread parameter (nRR) for Rosin–Rammler (RR) droplet
size distributions and the RR diameter (dm) can be found in [21]. Specifically, smaller dm

means more fine droplets are generated, which indicates that the atomization process more
effectively breaks down the liquid into small droplets. A smaller nRR signifies a narrower
distribution, meaning the droplet size generated is more uniform.

For the cases, all simulations used identical numerical setups and time points for
comparisons, except for the comparisons between Cases A, B, and C. Indeed, with different
colliding jet inlet velocities, the visualizations of atomization processes for Cases A to C
were performed at different time points to ensure that the same total mass had entered the
domain in each case (see Figure 6).
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Table 2. Comparison of liquid phase Weber numbers, Reynolds numbers, Ohnesorge numbers, arith-
metic mean diameters, total DPM masses atomized, MMAD, RR diameters, and spread parameters
for Cases A to G.

Case
Liquid Weber

Number
(Wel)

Liquid Reynolds Number
(Rel)

Ohnesorge
Number

(Ohl)

A 711 638.1 0.0418
B 1111 797.6 0.0418
C 400 478.6 0.0418
D 853 638.1 0.0458
E 640 638.1 0.0396
F 711 800.0 0.0333
G 711 533.3 0.0500

Case

Arithmetic
Mean

Diameter
(d10) [m]

Total DPM Mass Atomized
[kg]

MMAD
[m]

A 1.89 × 10−6 8.37 × 10−12 3.21 × 10−6

B 2.10 × 10−6 6.54 × 10−12 3.13 × 10−6

C 2.18 × 10−6 9.36 × 10−12 4.87 × 10−6

D 2.16 × 10−6 6.78 × 10−12 3.38 × 10−6

E 2.52 × 10−6 6.21 × 10−12 4.01 × 10−6

F 2.33 × 10−6 7.67 × 10−12 3.64 × 10−6

G 2.51 × 10−6 6.59 × 10−12 3.76 × 10−6

Case RR Diameter
(dm) [m]

Spread Parameter
(nRR)

A 3.54 × 10−6 3.68
B 3.47 × 10−6 3.62
C 5.34 × 10−6 4.0
D 3.72 × 10−6 3.92
E 4.37 × 10−6 3.89
F 4.11 × 10−6 3.78
G 4.11 × 10−6 4.19

3.1. Influence of Jet Inlet Velocity on Atomization

As shown in Figures 6 and 7, Cases A, B, and C are designed to investigate the
effects of different colliding jet inlet velocities while keeping surface tension and viscosity
constant. These cases are compared at time stations according to equal injected liquid
mass from the colliding jet inlets. Droplet formation occurred more rapidly at higher jet
inlet velocities (Case B), producing finer droplets. Case C, with a reduced colliding jet
inlet velocity, showed slower droplet formation and larger droplet formation. Case A, the
base case, demonstrated intermediate behavior, balancing droplet formation rate and size
distribution. The comparison of droplet size distributions in Figure 7 and Table 2 confirms
that increased colliding jet inlet velocities enhance atomization, resulting in smaller droplet
sizes. Specifically, Case C has a higher MMAD and d10 compared to Cases A and B.
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Indeed, when velocity increases from 60 m/s in Case C to 80 m/s in Case A and
100 m/s in Case B, both the liquid Weber number (Wel) and liquid Reynolds number (Rel)
increase, reflecting a reduced influence of viscous forces relative to the surface tension and
inertial force. In Case C, the lowest velocity produces the largest MMAD (i.e., 4.871 µm)
because weaker inertial forces allow surface tension to dominate, slowing ligament breakup
and generating larger droplets. In Case A, the velocity increases to 80 m/s. The higher
inertial forces in Case A promote more efficient ligament breakup, reducing the MMAD to
3.205 µm. In Case B, the highest velocity of 100 m/s leads to the strongest inertial forces
and drives even more rapid ligament fragmentation, resulting in the smallest MMAD
of 3.125 µm among Cases A to C. The monotonic decrease in MMAD across these cases
highlights the dominant role of increasing velocity, as higher Wel and Rel overcome surface
tension and viscous effects, enhancing atomization efficiency.

The underlying mechanisms discussed above can also be demonstrated from the
comparisons of the RR diameter (dm) and spread parameter (nRR) in Table 2. It can be
observed that higher colliding jet inlet velocities (Case B) will generate droplet distributions
with smaller dm and nRR, indicating a more uniform and finer droplet size distribution. This
suggests that increasing the colliding jet inlet velocity enhances the atomization process by
breaking the liquid into smaller, more consistent droplets. As a result, the overall efficiency
of droplet formation improves. In contrast, the comparison of the total DPM mass atomized
in Table 2 demonstrates that with the increase in colliding jet velocity, the total DPM mass
atomized decreased.
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3.2. Influence of Liquid Surface Tension on Atomization

Cases A, D, and E study the impact of varying liquid surface tensions on the atomiza-
tion in the SMI while keeping the inlet velocity and viscosity consistent. Comparisons can
be found in Figures 8 and 9, as well as Table 2. Specifically, reducing surface tension plays
a complex dual role in the colliding jet atomization process, i.e., (1) Primary atomization:
during the jet breakup stage, it enhances the likelihood of liquid jet breakup into a liquid
sheet, increasing the formation of smaller ligaments under the same airflow conditions
and shear forces [22]. Consequently, this leads to a higher probability of producing more
secondary droplets. (2) Secondary atomization: However, in contrast, during the droplet
breakup stage, it also increases the instability of the liquid surface shape, reducing the
likelihood of smaller ligaments where surface tension is the dominant force with which
to form high-sphericity shapes (i.e., fine droplets) [22]. It can be observed that variations
in surface tension significantly influence the dynamics of droplet formation in a complex
way, as demonstrated in Cases A, D, and E, where surface tension is systematically varied
from 0.06 N/m (Case D) to 0.072 N/m (Case A) and 0.08 N/m (Case E). Despite the inlet
velocity being held constant at 80 m/s and viscosity remaining unchanged across all cases,
resulting in an identical Reynolds number (Rel = 638.1), the altered balance between capil-
lary and inertial forces is evident in the liquid Weber number (Wel) and Ohnesorge number
(Ohl) [23]. Specifically, the lowest surface tension case (Case D) with σl = 0.06 N/m results
in Wel = 853.33 and Ohl = 0.0459. Consequently, Case D exhibits higher MMAD and d10

than the baseline case (Case A) (see Figure 9 and Table 2). This increase is attributed to
the enhanced likelihood of liquid jet breakup into a liquid sheet, leading to the formation
of larger ligaments under the same airflow conditions. However, the reduction in surface
tension also increases the instability of the liquid surface shape, which, in turn, decreases
the formation of smaller, high-sphericity droplets in regions where surface tension plays a
dominant role in fine ligament shape stability. Case A, with an intermediate surface tension
σl = 0.072 N/m, yields Wel = 711.11 and Ohl = 0.0418. Observed from the simulation results
of Case A, a balance between the two roles that surface tension may play on atomization
performance produces the smallest MMAD of 3.205 µm among Cases A, D, and E. Case E,
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characterized by the highest surface tension σl = 0.080 N/m, has Wel = 640 and Ohl = 0.0396.
The stronger capillary resistance delays ligament breakup, leading to the largest MMAD of
4.013 µm among Cases A, D, and E. The higher surface tension reduces the likelihood of
liquid jet breakup into a liquid sheet, thereby limiting the formation of smaller ligaments
under the same airflow conditions and shear forces. As a result, the total number of fine
droplets decreases, further contributing to the observed increase in MMAD.

Figure 9 and Table 2 also reveal additional complexities in the impact of surface tension
on the atomization process. For example, Case D exhibits higher d10, dm, and nRR as well as
lower total DPM mass atomized than Case A, suggesting weakened ligament fragmentation
and more significant post-breakup coalescence (see Figure 8). Case E, with the highest
surface tension, shows significantly larger d10 and dm compared to both Cases A and D. It
is very interesting to observe that Case E has the least total DPM mass atomized among
Cases A, D, and E. Indeed, the increased surface tension may resist droplet fragmentation,
producing larger, more stable droplets with a lower atomization rate (i.e., low total DPM
mass atomized) (see Figure 8).

Therefore, Figures 8 and 9, as well as Table 2, highlight the intricate interplay between
surface tension, ligament breakup, droplet formation, and atomization efficiency, emphasiz-
ing that surface tension reduction does not necessarily lead to a straightforward improve-
ment in droplet formation. Further simulations are necessary to gain deeper insights into
these dynamics, incorporating a broader range of surface tension values. Such investigations
will help elucidate the relationship between surface tension and atomization performance,
providing a more comprehensive understanding of the underlying mechanisms.
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3.3. Influence of Liquid Viscosity on Atomization

Cases A, F, and G focus on the effect of different liquid viscosities on atomization while
maintaining the same inlet velocity (Uin = 80 m/s) and surface tension (σl = 0.072 N/m).
Specifically, the viscosity increases from µl= 0.0008 Pa·s in Case F to µl = 0.001003 Pa·s
in Case A and µl = 0.0012 Pa·s in Case G. Although Figure 10 does not show significant
observable differences in the atomization process, comparisons in Figure 11 and Table 2
indicate some non-monotonic trends between the atomization effectiveness in generating
fine droplets vs. the increase in liquid viscosity.

Specifically, it can be seen from Figure 11 and the comparison of d10, dm, MMAD,
and nRR in Table 2 that Case F (lower viscosity) has higher d10, dm, and nRR than the
baseline Case A. Such a comparison indicates that Case F shows less effective atomization
in the generation of finer droplets than Case A. The higher d10 and MMAD may suggest
that while atomization is easier with a lower viscosity, the distribution of droplet sizes
results in a higher median. A possible explanation for this is that lower viscosity weakens
ligament cohesion, making ligaments more susceptible to rapid disintegration before they
can stretch into finer filaments, leading to a less uniform droplet size distribution [24,25].
Additionally, reduced viscosity diminishes resistance to droplet merging, increasing the
likelihood of coalescence in high-density spray regions [25]. As a result, while lower
viscosity theoretically enhances atomization, the observed increase in d10 and MMAD
indicates that the droplet size distribution favors a higher median diameter, ultimately
reducing overall atomization efficiency. Comparisons in Figure 11 and Table 2 also show
that Case G, with the highest liquid viscosity, generated droplet size distributions with
higher d10, dm, MMAD and nRR than Case A. This could be attributed to the increased
liquid viscosity, which enhances resistance to deformation and stretching, suppressing the
formation of smaller ligaments by requiring higher breakup energy and allowing capillary
forces to dominate over inertial forces. As a result, larger droplets are formed, leading
to lower atomization efficiency. These results demonstrate that the increasing viscosity
and the resultant increase in Ohl suppresses ligament breakup, leading to larger droplet
sizes [25]. As the baseline case, with higher µl than Case F and lower µl than Case G, Case
A (µl = 0.001003 Pa·s) has a moderate Ohnesorge number (Ohl = 0.0418) in this comparison,
indicating a balance between the dual roles of viscosity on atomization. This balance
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allows efficient ligament breakup while limiting excessive viscous resistance, resulting
in the smallest MMAD of 3.205 µm among Cases A, F, and G. Although Ohl of Case A
is between that of Cases F and G, the resulting MMAD is smaller than expected because
the balance of forces promotes efficient fragmentation, yielding a narrower distribution of
smaller droplets.
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Both Cases F and G demonstrate lower total DPM mass atomization compared to
Case A. However, Case F exhibits a higher total DPM mass atomization than Case G.
This indicates that while lower viscosity facilitates atomization, it may also promote in-
creased droplet interactions and potential coalescence, preventing the ligament volume
from becoming sufficiently small to convert into DPM. In contrast, the higher viscosity in
Case G inhibits the atomization process, resulting in fewer droplets and a lower mass of
atomized medication.

4. Conclusions
Employing a validated VOF-to-DPM, this study highlights the complex interplay

between colliding jet inlet velocity, surface tension, and liquid viscosity, influencing the
atomization process in Respimat® SMI. Key conclusions based on the VOF-to-DPM simula-
tion results include the following:

• Increased colliding jet inlet velocities (i.e., Case C → A → B) improve atomization effi-
ciency by enhancing ligament fragmentation, producing finer droplets with narrower
size distributions. However, higher velocities (i.e., Case C → A → B) reduce the total
atomized droplet mass, potentially reducing the emitted dose.

• Surface tension exhibits the non-monotonic effect on atomization. Lower surface
tension (i.e., Case D vs. Case A and Case E) promotes droplet breakup but may also
increase post-breakup coalescence, leading to larger median sizes. Conversely, higher
surface tension (i.e., Case E vs. Case A and Case D) resists breakup, resulting in fewer,
larger, and more stable droplets.

• Lower viscosity (i.e., Case F vs. Case A and Case G) aids atomization by reducing
resistance to ligament breakup but can lead to coalescence, increasing droplet size.
Higher viscosity (i.e., Case G vs. Case A and Case F) inhibits atomization, producing
fewer, larger droplets with a lower total atomized mass.

The findings listed above underscore the importance of balancing the three parameters
to achieve optimal droplet size distributions for efficient pulmonary drug delivery.

5. Limitations of This Study and Future Work
The limitations of this study include the following points:

• The non-monotonic trends observed in surface tension and the effects of viscosity
require further exploration to fully understand the underlying mechanisms, including
secondary breakup and droplet coalescence.

• This study focuses on the initial atomization process without considering downstream
droplet transport, evaporation, or deposition in realistic airway geometries.

• To address the limitations mentioned above, future work should attempt the following:
• Extending the study with more surface tension and liquid viscosity properties can gen-

erate more insights into the underlying mechanisms leading to non-monotonic trends.
• Investigating the effects of nozzle geometry, impingement angles, and additional

operational parameters on atomization dynamics, as well as exploring the role of drug
formulation properties, such as surfactants and active ingredient concentrations, on
atomization and delivery efficiency.

• Incorporating user-defined functions (UDFs) for the further customization of the
VOF-to-DPM to capture droplet interactions, secondary breakup, and coalescence
during transport.

• Couple atomization simulations with downstream airflow and deposition models to
evaluate the performance of SMIs in realistic respiratory systems.
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